Как сделать импульсный блок питания своими руками?

Если нет желания устанавливать громоздкий трансформатор или создавать намотку, можно своими руками собрать блок питания импульсного типа, который требует трансформатора всего с несколькими витками.

импульсный блок питания

При этом, потребуется небольшое количество деталей, а работу можно выполнить за 1 час. В данном случае, основой для блока питания используется микросхема IR2151.

Для работы понадобятся следующие материалы и детали:

  1. PTC термистор любого типа.
  2. Пара конденсаторов, которые выбираются с расчетом 1мкф. на 1 Вт. При создании конструкции подбираем конденсаторы так, чтобы они вытянули 220 Вт.
  3. Диодная сборка типа «вертикалка».
  4. Драйвера типа IR2152, IR2153, IR2153D.
  5. Полевые транзисторы типа IRF740, IRF840. Можно выбрать и другие, если у них хороший показатель сопротивления.
  6. Трансформатор можно взять из старых компьютерных системных блоков.
  7. Диоды, устанавливаемые на выходе, рекомендуется брать из семейства HER.

Кроме этого, понадобятся следующие инструменты:

  1. Паяльник и расходные материалы.
  2. Отвертка и плоскогубцы.
  3. Пинцет.

Также, не стоит забывать и о необходимости хорошего освещения на месте работы.

Пошаговая инструкция

принципиальная схема

структурная схема

Сборка проводится согласно составленной схеме цепи. Микросхема была подобрана согласно особенностям цепи.

Сборка проводится следующим образом:

  1. На входе устанавливаем PTC термистор и диодные мосты.
  2. Затем, устанавливается пара конденсаторов.
  3. Драйвера необходимы для регулирования работы затворов полевых транзисторов. При наличии у драйверов индекс D в конце маркировки устанавливать диод  FR107 не нужно.
  4. Полевые транзисторы устанавливаются без закорачивания фланцев. При проведении крепления к радиатору, используют специальные изоляционные прокладки и шайбы.
  5. Трансформаторы устанавливаются с закороченными выводами.
  6. На выходе диоды.
Все элементы устанавливаются в отведенные места на плате и припаиваются с обратной стороны.

Проверка

проверка импульсного блока питанияДля того, чтобы правильно собрать блок питания, нужно внимательно отнестись к установке полярных элементов, а также следует быть осторожным при работе с сетевым напряжением. После отключения блока от источника питания, в цепи не должно оставаться опасного напряжения. При правильной сборке, последующая наладка не проводится.

Проверить правильность работы блока питания можно следующим образом:

  1. Включаем в цепь, на выходе лампочка, к примеру,12 Вольт. При первом кратковременном пуске, лампочка должна гореть. Кроме этого, следует обратить внимание на то, что все элементы не должны нагреваться. Если что-то греется, значит, схема собрана неправильно.
  2. При втором пуске замеряем значение тока при помощи тестера. Даем проработать блоку достаточное количество времени для того, чтобы убедиться в отсутствии нагревающихся элементов.

Кроме этого, нелишним будет проверка всех элементов при помощи тестера на наличие высокого тока после выключения питания.

Рекомендации по сборке:

  1. Как ранее было отмечено, работа импульсного блока питания основана на обратной связи. Рассматриваемая схема не требует специальной организации обратной связи и различных фильтров по питанию.
  2. Особое внимание следует уделить выбору полевых транзисторов. В данном случае, рекомендуются полевые транзисторы IR, которые славятся устойчивостью к тепловому разрешению. Согласно данным производителя, они могут стабильно работать до 150 градусов Цельсия. Однако, в этой схеме они не сильно нагреваются, что можно назвать весьма важной особенностью.
  3. Если нагрев транзисторов происходит постоянно, следует устанавливать активное охлаждение. Как правило, оно представлено вентилятором.

Достоинства и недостатки

импульсный блок питания

Импульсный преобразователь имеет следующие достоинства:

  1. Высокий показатель коэффициента стабилизации позволяет обеспечить условия питания, которые не будут вредить чувствительной электронике.
  2. Рассматриваемые конструкции обладают высоким показателем КПД. Современные варианты исполнения имеют этот показатель на уровне 98%. Это связано с тем, что потери снижены до минимума, о чем говорит малый нагрев блока.
  3. Большой диапазон входного напряжения – одно из качеств, из-за которого распространилась подобная конструкция. При этом, КПД не зависит от входных показателей тока. Именно невосприимчивость к показателю напряжения тока позволяет продлить срок службы электроники, так как в отечественной сети электроснабжения прыжки показателя напряжения частое явление.
  4. Частота входящего тока оказывает влияние на работу только входных элементов конструкции.
  5. Малые габариты и вес, также обуславливают популярность из-за распространения портативного и переносного оборудования. Ведь при использовании линейного блока вес и габариты увеличиваются в несколько раз.
  6. Организация дистанционного управления.
  7. Меньшая стоимость.

Есть и недостатки:

  1. Наличие импульсных помех.
  2. Необходимость включения в цепь компенсаторов коэффициента мощности.
  3. Сложность самостоятельного регулирования.
  4. Меньшая надежность из-за усложнения цепи.
  5. Тяжелые последствия при выходе одного или нескольких элементов цепи.
При самостоятельном создании подобной конструкции, следует учитывать то, что допущенные ошибки могут привести к выходу из строя электропотребителя. Поэтому нужно предусмотреть наличие защиты в системе.

Устройство и особенности работы

принцип работы импульсного блока питания

При рассмотрении особенностей работы импульсного блока, можно отметить следующие:

  1. Сначала происходит выпрямление входного напряжения.
  2. Выпрямленное напряжение в зависимости от предназначения и особенностей всей конструкции, перенаправляется в виде прямоугольного импульса высокой частоты и подается на установленный трансформатор или фильтр, работающий с низкими частотами.
  3. Трансформаторы имеют небольшие размеры и вес при использовании импульсного блока по причине того, что повышение частоты позволяет повысить эффективность их работы, а также уменьшить толщину сердечника. Кроме этого, при изготовлении сердечника может использоваться ферромагнитный материал. При низкой частоте, можно использовать только электротехническую сталь.
  4. Стабилизация напряжения происходит при помощи отрицательной обратной связи. Благодаря использованию данного метода, напряжение, подаваемое к потребителю, остается неизменным, несмотря на колебание входящего напряжения, и создаваемой нагрузки.

Обратная связь может быть организована следующим образом:

  1. При гальванической развязке, используется оптрон или выход обмотки трансформатора.
  2. Если не нужно создавать развязку, используется резисторный делитель напряжения.

Подобными способами выдерживается выходное напряжение с нужными параметрами.

Стандартные блоки импульсного питания, который может использоваться, к примеру, для регулирования выходного напряжения при питании светодиодной лампы, состоит из следующих элементов:

  1. Часть входная, высоковольтная. Она, как правило, представлена генератором импульсов. Ширина импульса — основной показатель, оказывающий влияние на выходной ток: чем шире показатель, тем больше напряжение, и наоборот. Импульсный трансформатор стоит на разделе входной и выходной части, проводит выделение импульса.
  2. На выходной части стоит PTC термистор. Он изготавливается из полупроводника, имеет положительный показатель коэффициента температуры. Данная особенность означает, что при повышении температуры элемента выше определенного значения, значительно поднимается показатель сопротивления. Используется в качестве защитного механизма ключа.
  3. Низковольтная часть. С низковольтной обмотки проводится снятие импульса, выпрямление происходит при помощи диода, а конденсатор выступает в качестве фильтрующего элемента. Диодная сборка может провести выпрямление тока до значения 10А. Следует учитывать, что конденсаторы могут быть рассчитаны на различную нагрузку. Конденсатор проводит снятие оставшихся пиков импульса.
  4. Драйвера проводят гашение возникающего сопротивления в цепи питания. Драйвера во время работы проводят поочередное открытие затворов установленных транзисторов. Работа происходит с определенной частотой
  5. Полевые транзисторы выбирают с учетом показателей сопротивления и максимального напряжения при открытом состоянии. При минимальном значении, сопротивления значительно повышается КПД и уменьшается нагрев во время работы.
  6. Трансформатор типовой для понижения.

С учетом выбранной схемы, можно приступать к созданию блока питания рассматриваемого типа.

Оставить комментарий

очиститьОтправить